A few years ago on a drive across Arizona on highway 40, I stopped to see the Meteor Crater. As I stared into the galactic pockmark, I wondered how many human bodies it would take to fill it to the rim, which is a fun exercise to do at the Grand Canyon as well. I then imagined how a great big pile of 6.4 billion bodies would look on the salt flats of Utah. Until now, I always assumed the mathematics of calculating the dimensions of such a pile would be too difficult, but I decided to accept the challenge, and face reality.

In making calculations, you have to make several assumptions. First, the would bodies would be unclothed. They could either be ground up to resemble ground, albeit, a bit crunchy, or they could simply be piled up as they are. The amount of air between them would be negligible considering all the weight to be placed on top of them. Second, the bodies would be immune to decay and water loss. Everyone knows that a pile of human skeletons is much lighter and smaller than a pile of fresh corpses. Our goal is not to picture a grotesque pile of bodies, but to get an idea of how massive 6.4 billion bodies is. This is science. Third, the foundation which the pile is resting on would be a flat, stable surface. And fourth, the bodies would not undergo compaction except to force out air pockets.

Before we proceed further, lets just use our imaginations to picture a big pile humans. I find it an enjoyable mental exercise, and a unique form of meditative visualization. I normally use a conical form with a 45 degree slope in my mental portrait, but you may do as you wish. At times you may think to yourself that it would be a rather large pile, yet in earthly terms it would only be a small hill. But then you may flip around, and start thinking that 6.4 billion is a rather huge number, and muse that even that many prairie dogs would be no anthill. Just imagine how long it would take to circumambulate this pile, or better yet, climb it. As you picture yourself climbing it, do you feel the air getting cooler and thinner as you ascend? Do you see a snowcapped peak? Turn around to absorb the view. Do you see a majestic sunset? I usually visualize myself hiking up this pile of flesh beneath a full moon, if not on the moon itself. Whatever you see is okay, just try not to think about the smell and the sound of your cleated sneakers digging in.

Now that we have finished our brief cruise the isles of fantasy, the time is ripe for a more realistic, and hence sane view. Just for pleasure, I have calculated several different shapes that the bodies could be compiled in. But first, a little math will be necessary to demonstrate how I arrived at my findings. 70% of the world's population is over 14 years old, and there is nearly an equal gender ratio. The average adult male weighs150 pounds, and the average adult female weighs 120 pounds, yielding an overall adult weight of 135 pounds. For those 14 and under, the average weight is about 60 pounds. This results in an average weight of 112.5 pounds, which in water equals 14.063 gallons, yielding a volume of 1.88 cubic feet. The human body is 97% of the density of water, thus raising the cubic footage of human to 1.94 cubic feet, including the hair, nails, prosthetics, and the occasional piercing. With an optimistic outlook and an increase in the consumption of fast food, we might live to see the average human cubic footage rise to an even 2.00. With 6.4 billion humans on the planet (a high estimate which should be relevant for a few years barring some cataclysm, such as a meteor), we can estimate a volume of 12.4 billion cubic feet of human.

Okay, back to Meteor Crater. The deepest point is 550 feet feet, and it has a 4000 foot average diameter. This results in a volume of 2.3 billion feet. Next time you visit ($\$ 10$ fee), tell your friends and everyone else you see there (including the poorly informed park rangers) that you could fill that crater well over five times with human. The weight of the meteor might have been around a billion pounds. Just think of a human asteroid coming down with a 2872 foot diameter and a weight of 720 billion pounds. It looks really silly if you picture it with arms and legs dangling out, flapping violently in the wind. Let us pretend that it resisted combustion on its earthbound path. It could easily cause a mass extinction.

If we were to construct a building with a 210 foot square base out of humans (roughly the size of the old world trade center), it would soar to 53 miles high, into the company of satellites. A pyramid proportionately identical to the great pyramid of Giza with a 51 degree slope would be 2472 feet tall and 3881 feet at the base - a volume of 135 times the original. A human dome would be 1809 feet tall and 3619 feet in diameter, dwarfing the Louisiana Superdome. A human road .5 feet thick and 20 feet wide would be able to make nearly 7 round trips to the sun. Please plan accordingly.

Crater Lake is perhaps one of America's most recognizable natural features. The lake has approximately 20.5 square miles of surface area. We, as a species could cover that deep blue water with 21.8 feet of human. The smallest state in the union is Rhode Island at 1045 square miles. If all the humans were crammed into that state, we would each have 4.5 square feet to ourselves, which is about enough room to dance very conservatively, as you would at a Garth Brooks concert.

Lastly, lets get back to our quintessential pile, or cone with a 45 degree slope. With an equal radius and height, it would be 2279 feet tall, and possess a 4558 foot diameter, higher than the tallest building in the world by nearly 800 feet, and with a footprint large enough to completely smother the downtown of almost every city on earth. In geological terms, it would be about 400 feet shorter than Krakatoa, which is no measly pile of donkey terds. How does that compare to how you pictured it earlier?

Well, that concludes our discussion and the sun is now setting on our great pile, or cone. Indeed, this is a new science, expected to gain relevance and acceptance amongst the brightest minds worldwide. In not too long, people may be discoursing and confabulating about human cubic footage. As a pioneer of this movement, I will bestow upon it the name 'geodesic anthromorphology', or GODAM, or perhaps GODAMY as a catchy acronym for popular usage.

